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A B S T R A C T

This paper investigates the direct application of standardized designs on the robot for conducting robot hand–
eye calibration by employing 3D scanners with collaborative robots. The well-established geometric features
of the robot flange are exploited by directly capturing its point cloud data. In particular, an iterative method
is proposed to facilitate point cloud processing towards a refined calibration outcome. Several extensive
experiments are conducted over a range of collaborative robots, including Universal Robots UR5 & UR10
e-series, Franka Emika, and AUBO i5 using an industrial-grade 3D scanner Photoneo Phoxi S & M and a
commercial-grade 3D scanner Microsoft Azure Kinect DK. Experimental results show that translational and
rotational errors converge efficiently to less than 0.28 mm and 0.25 degrees, respectively, achieving a hand–eye
calibration accuracy as high as the camera’s resolution, probing the hardware limit. A welding seam tracking
system is presented, combining the flange-based calibration method with soft tactile sensing. The experiment
results show that the system enables the robot to adjust its motion in real-time, ensuring consistent weld
quality and paving the way for more efficient and adaptable manufacturing processes.
. Introduction

Depth sensor provides a versatile perception of the physical world
ith refined details through three-dimensional (3D) measurements.
ince Microsoft’s Kinect [1], a wide range of consumer-grade 3D scan-
ers has lowered the entry barriers when integrating robotic vision
n research and applications [2]. Through optical perception, depth-
ensing technologies translate the geometric details in the physical
orld into three-dimensional point cloud data concerning the camera

rame [3]. In areas including robotic welding [4,5], material han-
ling [6,7], and human–robot collaborations [8], robotics researchers
ave shown a growing acceptance of adopting depth-sensing tech-
ologies [9], yet the robot-camera, or so-called hand–eye, calibration
emains the first problem in practice [10–12].

Industrial robots are usually built with excellent repeatability but
elatively low accuracy, often requiring calibration using machine vi-
ion [13,14]. The repeatability problem is commonly solved by directly
eading the sensor data saved at each joint [15]. In contrast, the accu-
acy problem involves the inverse kinematic computation of a specific
r target pose in the Cartesian space at the end-effector [16]. The hand–
ye calibration enhances the robot’s accuracy by compensating the
rrors between the robot controller’s computed pose and the camera’s
easured pose by the camera [17].

Hand–eye calibration is a 3D problem that can be solved using
lassical 2D cameras or by incorporating emerging 3D depth sensors.

∗ Corresponding author.
E-mail addresses: wanf@sustech.edu.cn (F. Wan), songcy@ieee.org (C. Song).

The classical problem of hand–eye calibration has been well-studied
over the years [18], which usually involves a robot as the robot, a
camera as the eye, an end-effector as the hand, and a high-precision
calibration marker or object as the world [11].

• The hand–eye calibration, by design, refers to the relationship
between the Tool Center Point (TCP) and the ‘‘eye’’ camera. This
is especially true in scenarios with a fixed end-effector as the
hand to simplify the expression. However, in many academic and
engineering applications, robotic researchers also choose to use
the default TCP on the tool flange as the hand to enhance the
re-usability of the calibration results.

• The tool-flange calibration specifies the relationship between the
default TCP at the tool flange and the actual TCP at the end-
effector. The default TCP is directly accessible in most robot
controllers, which the manufacturer already calibrates. When an
end-effector is attached, one can directly refer to the technical
data sheet for the tool-flange relationship. However, many end-
effectors are customized according to the specific use, which may
require further calibration to determine the tool-flange relation-
ship.

• The robot-robot calibration refers to the case when multiple
robots are used for collaborative tasks, such as dual-arm robots
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Measurement 238 (2024) 115376 
and robot-assisted surgeries. In practice, many multi-robot sys-
tems are designed with one robot attached with an ‘‘eye’’ cam-
era and the other with an end-effector. The relative positioning
between the robot base frames must be calibrated before use.

The calibration problem can be mathematically formulated into two
quations [19]. The first one is 𝐀𝐗 = 𝐗𝐁, where 𝐗 is the unknown
and–eye transformation, 𝐀 involves the relative transformation of the
obot’s TCP, and 𝐁 involves the simultaneous relative transformation
f the calibration object to the camera. The second one is 𝐀𝐗 =
𝐁, where 𝐗 and we 𝐘 are the unknown hand–eye and robot-world

ransformations, and 𝐀 and 𝐁 involve the poses of the robot’s TCP
nd the calibration object, respectively. Solving these equations often
equires numerical optimizations, and the accuracy is highly dependent
n various sources of error, including mechanical errors, measurement
oise, calibration fixture inaccuracies, algorithmic limitations, etc.

The hand–eye calibration incorporating 3D sensors has also been
xtensively studied as industrial applications emerge. Recent work
y Wu et al. [12] proposed a 4D Procrustes Analysis Approach for
he hand–eye calibration problem, where standardized objects are still
equired for implementation. Hu [20] proposed a hand-to-eye calibra-
ion method using a Bursa coordinate transform model through depth
ensing. Kahn et al. [17] designed a 3D calibration object with a curved
urface such that its pose can be uniquely estimated using the iterative
losest point (ICP) algorithm, demonstrating that 3D calibration pro-
ides more accurate results on average. Zhang et al. [21] addressed
and–eye calibration using a surgical robot with a stereo laparoscope
y proposing a computationally efficient iterative method. Yang et al.
22] adopted a sphere model as the calibration object and reformulated
he hand–eye calibration problem to use only the calibration object’s
ranslation (3-DoF) data.

Theoretically, the calibration object can be any object in the cam-
ra’s view as long as the object’s pose can be estimated [23]. However,
here are a few limitations to the current solutions. In industrial appli-
ations such as assembly and manipulation, where high accuracy is re-
uired, standard calibration objects with high manufacturing precision
re needed for hand–eye calibration, which is usually expensive [24].
n the eye-to-hand scenario, installing and removing the calibration
bject from the robot arm adds an extra burden to the already time-
onsuming deployment of robots [25]. Moreover, involving an external
alibration object brings another unknown robot-world transformation
r increases the complexity of calibration equations [23]. With the
rowing market of robotic engineering, the standardization of robot
esign and manufacturing provides a rich set of geometric features that
re directly measurable by the depth sensors [26]. The International
tandard Organization (ISO) 9409-1:2004 defines the main dimen-
ions, designations, and markings for a circular plate and a cylindrical
haft on the tool flange as the mechanical interface to ensure the
xchangeability and orientation of end-effectors [27]. There is a need
or further research on the utilization of depth-sensing technologies to
irectly measure such standardized mechanical interfaces in 3D, which
onstitutes the focus of this paper.

In this paper, we propose a novel method using high-fidelity 3D
canners to directly measure the standardized geometric features on the
ool flange of a robot for hand–eye calibration, as shown in Fig. 1. The
etup of direct flange-based hand–eye calibration (Fig. 1a) includes a
D scanner and a tool flange on a robot. Since the flange design of
obots, such as UR5 (Fig. 1b), follows the ISO standards, the geometric
eatures are readily identifiable. Fig. 1c shows the point clouds of the
lange sampled from the CAD model (blue) and captured by the 3D
canner (yellow). With the proposed flange-based hand–eye calibra-
ion, the yellow point cloud can well match the blue point cloud, as
hown in Fig. 1d. In addition, the proposed iterative method could
lso provide reliable circular feature calibration (orange) with partial
oint clouds (violet) (Fig. 1e). Unlike previous approaches that mainly

easure calibration objects external to the robot system, the proposed

2 
ethod focuses on a calibration process using a 3D measurement of
he geometric features within the robot system under international
tandardization. The proposed method effectively reduces system errors
y removing unnecessary estimations and transformations during the
alculation process of hand–eye calibration.

With the growing adoption of 3D scanners in robotic welding, the
roposed method can potentially reduce the complexities in setting up
he vision-based robot system for integration, as demonstrated in an
riginal robotic welding system integrating 3D vision and soft tactile
ensing (more details are in Section 2.2). Adopting high-precision 3D
ision scanners in robotic welding enables robust and efficient weld
eam tracking and fully autonomous welding [28]. Accurate hand–eye
alibration is the first step in the general process of seam tracking via a
ision system [10,29]. Tactile sensors are also used when vision systems
re not proficient, e.g., the weld seam is not entirely in the view of a
amera or polluted environments [30,31]. The discrepancy between the
obot’s welding trajectory and the actual weld can be mitigated through
he force feedback sensing provided by tactile sensors [32]. Owing to
he outstanding flexibility and safety, tactile sensors fabricated from
oft materials are extensively employed in robot tasks [33,34]. Wu
t al. [35] proposed a soft conical network structure with tactile sensing
apability, and it is appropriate for fitting welding seams and providing
orce feedback. In this paper, the proposed calibration method, com-
ined with the tactile sensor, is applied to the robotic welding to ensure
onsistent welding quality and adjust the motion in real-time.

Contributions of this paper are listed as the following:

• Proposed a novel hand–eye calibration method by measuring the
intrinsic design features of the robot system, i.e., tool flange and
base mount, using high-fidelity 3D scanners;

• Implemented an iterative algorithm that effectively and efficiently
optimizes the calibration accuracy as high as the camera’s, prob-
ing the hardware limit;

• Conducted a quantitative and systematic evaluation of the calibra-
tion accuracy using several collaborative robots, industrial-grade,
and consumer-grade 3D scanners;

• Presented a safe and adaptable welding seam tracking system
that combines the proposed calibration method and soft tactile
sensing.

The rest of this paper is structured as follows. Section 2 proposes
he hand–eye calibration method via standardized robotic flanges and
oft robot tactile welding system via multi-modal fusion. Section 3
resents the simulation and experiment results using the flange-based
alibration method and its application in robotic welding. Section 4 dis-
usses and evaluates the proposed method’s effectiveness. Conclusion,
imitations, and future works are summarized in Section 5.

. Methods

.1. Hand–eye calibration via standardized robotic flanges

The hand–eye calibration is a kinematic calibration problem, which
sually involves four coordinate systems, including the base of the
obot, the tool-mounting flange of the robot, the camera frame, and
he calibration object frame, which are denoted by {Base}, {Flan},
Cam} and {Mark} respectively. In this paper, we denote A

B𝐇 as the
omogeneous transformation matrix of frame B relative to A and �̂�
with hat) denotes unknown transformation to be calculated. The rest
f the paper will focus mainly on the hand–eye calibration problem
o demonstrate the proposed method, which can be further extended
o other calibration configurations. The following notes are usually
onsidered before analysis.

• The transformation between a robot’s {Base} and {Flan},
i.e., Base

Flan𝐇, is usually known depending on the robot’s specifica-

tions.
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Fig. 1. A direct hand–eye calibration based on a three-dimensional measurement of the standardized geometrical features on the robot’s tool flange.
• The transformation between the camera {Cam} and object
{Mark}, i.e., Cam

Mark𝐇, is a calculated matrix based on the camera’s
optical measurement of the object in the form of a 2D image or
3D point cloud.

• Depending on the object and camera placement relative to the
robot, there are two common configurations of hand–eye calibra-
tion, namely Eye-in-Hand configuration (Fig. 2a) and Eye-on-Base
configuration (Fig. 2b).

• Another more advanced case of co-manipulation (Fig. 2c) is when
two robots are involved, equivalent to a combination of the Eye-
in-Hand and Eye-on-Base. Furthermore, we will introduce another
configuration of Eye-on-Arm calibration, where the camera can be
fixed at any convenient location on the arm.

2.1.1. Four configurations of hand–eye calibration
Eye-in-Hand Calibration: For Eye-in-Hand configuration, the cam-

era is mounted on the robot’s wrist near the tool flange, which can
be expressed as Flan

Cam�̂�. On the other hand, the object is placed at a
fixed location concerning the robot base, expressed as Mark

Base �̂�. The hat
on top denotes that this transformation matrix will be calculated for
calibration. Therefore, a closed-loop coordinate transformation can be
formed as follows:
Base
Flan𝐇 ⋅ Flan

Cam�̂� ⋅ Cam
Mark𝐇 ⋅ Mark

Base �̂� = 𝐈. (1)

Note that in Eq. (1), Base
Flan𝐇 is a known matrix based on the robot’s

joint configuration, and Cam
Mark𝐇 is also a known one based on the

camera’s measurement. The iterative method is a standard solution to
Eq. (1) by sampling multiple points within the camera’s view range
and the robot’s dexterity space. For example, by moving the robot from
point 𝑝 to 𝑝 in the configuration space, the calibration marker remains
1 2

3 
fixed to the robot base and the following two equations can be obtained
concerning {Flan}𝑝1 and {Flan}𝑝2 .

Base
Flan𝑝1

𝐇 ⋅
Flan𝑝1
Cam𝑝1

�̂� ⋅
Cam𝑝1
Mark 𝐇 = Base

Flan𝑝2
𝐇 ⋅

Flan𝑝2
Cam𝑝2

�̂� ⋅
Cam𝑝2
Mark 𝐇 = Base

Mark�̂� , (2)

Flan𝑝1
Cam𝑝1

�̂� =
Flan𝑝2
Cam𝑝2

�̂� = Flan
Cam�̂�. (3)

By left multiplying and right multiplying both sides in Eq. (2) by
Base
Flan𝑝2

𝐇−1 and
Cam𝑝1
Mark 𝐇−1 respectively, one can further rewrite Eq. (2) as

𝐀𝐗 = 𝐗𝐁 to solve for Flan
Cam�̂�, where 𝐗 = Flan

Cam�̂�, 𝐀 = Base
Flan𝑝2

𝐇−1 ⋅ Base
Flan𝑝1

𝐇

and 𝐁 =
Cam𝑝2
Mark 𝐇 ⋅

Cam𝑝1
Mark 𝐇−1. In practice, the points to be sampled can be

as many as 10∼30 points to improve the calibration accuracy.
Eye-on-Base Calibration: In this paper, we use the term ‘‘Eye-on-

Base’’ instead of ‘‘Eye-to-Hand’’ to differentiate it from the Eye-in-Hand
configuration further, as the camera is usually mounted at a fixed loca-
tion in the world frame concerning the robot’s base frame, expressed as
Base
Cam�̂�. A high-precision calibration object is usually fixed on the robot’s
wrist near the tool flange, expressed as Flan

Mark�̂�. For each robot pose, the
following coordinate transformation establishes
Base
Flan𝐇 ⋅ Flan

Mark�̂� = Base
Cam�̂� ⋅ Cam

Mark𝐇 = Base
Mark�̂�, (4)

which can be symbolically expressed as 𝐀𝐗 = 𝐘𝐁.
Collaborative robots recently emerged as a viable solution for

human–robot collaborative tasks such as co-manipulation, where mul-
tiple robots work collaboratively for an integrated task. Following
the above notation, we can express the transformation of the co-
manipulation as follows:

Base1
Flan1𝐇 ⋅ Flan1

Cam �̂� ⋅ Cam
Mark𝐇 = Base1

Base2�̂� ⋅ Base2
Flan2𝐇 ⋅ Flan2

Mark �̂� . (5)

Solving Eq. (5) becomes more challenging as three unknown matri-
ces need to be determined simultaneously. However, one can decom-

pose the co-manipulation problem into a simultaneous calculation of an
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Fig. 2. Common configurations of robot hand–eye calibration.
Eye-in-Hand problem and an Eye-on-Base one. The left side of Eq. (5)
can be rewritten as an Eye-in-Hand problem for robot1 if the robot2
with a calibration object is at a fixed pose using Eq. (6)a. Similarly, the
right side of Eq. (5) can be rewritten as an Eye-on-Base problem for
robot2 when robot 1 with a camera is at a fixed pose in space using
Eq. (6)b. As a result, Eq. (5) becomes the following:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Base1
Flan1𝐇 ⋅ Flan1

Cam �̂� ⋅ Cam
Mark𝐇 ⋅ Mark

Base1�̂� = 𝐈 (𝑎)
Base2
Flan2𝐇 ⋅ Flan2

Mark �̂� = Base2
Cam �̂� ⋅ Cam

Mark𝐇 (𝑏)
Base1
Base2�̂� = Base1

Flan1𝐇 ⋅ Flan1
Cam �̂� ⋅ Base2

Cam �̂�−1 (𝑐)

. (6)

Co-Manipulation Calibration: Recent work by Wu et al. [11]
provides a comprehensive solution to the co-manipulation problem
similar to Eq. (5), in which the Flan1

Cam �̂� represents the Hand–Eye cal-
ibration problem for robot1; the Flan2

Mark �̂� represents the Tool-Flange
calibration problem for robot2; and the Base1

Base2�̂� represents the Robot-
Robot calibration problem between robot1 and robot2. These three
problems can be integrated into a matrix equation of 𝐀𝐗𝐁 = 𝐘𝐂𝐙
for a simultaneous solution. Due to the complexity of the problem,
the developed algorithm remains challenging to implement due to the
uncertainties of the sensor noise [36].

Eye-on-Arm Calibration: The relative placements of the camera
and the marker differentiate the configurations of hand–eye calibration
4 
above. This naturally leads to the possibility of fixing the camera
somewhere in the middle of the robot arm {Arm}, namely the Eye-
on-Arm configuration in Fig. 3. Depending on the placement of the
calibration object, the first case of the Eye-on-Arm configuration is
when the object is fixed on the robot’s wrist near the robot flange,
which is similar to the Eye-in-Hand configuration in Eq. (1) as
Base
Arm𝐇 ⋅ Arm

Cam�̂� ⋅ Cam
Mark𝐇 ⋅ Mark

Base �̂� = 𝐈. (7)

The second case is similar to the Eye-on-Base configuration, where
the marker object is fixed to a point in space relative to the robot’s
base mounting flange. The coordinate transformation of this case can
be written as
Base
Flan𝐇 ⋅ Flan

Mark�̂� = Base
Arm𝐇 ⋅ Arm

Cam�̂� ⋅ Cam
Mark𝐇, (8)

which is similar to Eq. (4).

2.1.2. Standardized design of robot flanges
The preliminary statistics of the World Robotics Report show a total

of 3,903,633 units of operational stock of industrial robots worldwide
in 2022, growing at an average of 13% since 2017 [37]. Standard-
izing robot interfaces at various levels is critical to the reusability
and exchangeability of robot systems, including mechanical, electrical,
and communication. Among the International Standard Organization
(ISO)’s catalog 25.040.30 industrial robots and robots, ISO 9409-1
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Fig. 3. Eye-on-Arm configuration for robot hand–eye calibration.
specifies the design standardization of the mechanical interfaces or
the fixture design on the tool flange [27]. Fig. 4 is adapted from the
latest version released in 2004, which specifies the critical mechanical
interfaces, including the threaded holes referencing circle diameter in
𝑑1, the flange’s outer circle diameter in 𝑑2, the size of the threaded holes
𝑑4, the number of threaded holes 𝑁 to be used for fixture, etc.

A few flange design examples following the ISO 9409-1-50-4-M6
are reproduced in Fig. 5 among common collaborative robot brands.
Robot and end-effector manufacturers following the same designation
code can be easily attached to accommodate different configurations
of the robot systems for various applications. Such standardization also
requires the manufacturers to meet specific manufacturing qualities to
facilitate exchangeability. This study proposes to utilize such standard-
ized design features for direct hand–eye calibration using high-fidelity
3D scanners, which will be explained next.

2.1.3. Flange-based hand–eye calibration
In this section, the Eye-on-Base configuration is used to demonstrate

the proposed method of flange-based hand–eye calibration. To the
authors’ best knowledge, it is the first time that the tool-mounting
flange of the robot is directly used as a calibration reference, especially
when 3D depth sensing is used as the ‘‘eye’’ camera. As regulated by
ISO 9409-1, the tool flanges are usually designed in a circular shape.
Therefore, the center of the flange, which is also the robot’s Tool Center
Point (TCP), is selected as the referencing point for hand–eye calibra-
tion. As a result, the hand–eye calibration problem is reformulated as

[ Base𝐩𝑖
1

]

= Base
Cam𝐇 ⋅

[ Cam𝐩𝑖
1

]

, (9)

where {(Base𝐩𝑖, Cam𝐩𝑖) ∣ 𝑖 = 1, 2,… , 𝑛} is a set of coordinate pair about
the TCP relative to {Base} and {Cam}, respectively. As the marker point
is also the TCP of the robot arm, Base𝐩𝑖 can be directly obtained in
the robot controller, whereas Cam𝐩𝑖 can be calculated by point cloud
algorithms. Then, the hand–eye calibration problem becomes finding
the least-squares estimation of transformation parameters between two
sets of 3-DoF data as the following, min 1

𝑛
∑𝑛

𝑖=1 ∥Base
Cam 𝐑 ⋅ Cam𝐩𝑖 + Base

Cam𝐭 −
Base𝐩𝑖 ∥, which has an SVD-based optimal solution of Base

Cam�̂� as
{

Base
Cam�̂� = 𝐔𝐒𝐕𝑇 (𝑎)
Basê Base Base ̂ Cam , (10)

Cam𝐭 = µ − 𝑐 ⋅ Cam𝐑 ⋅ µ (𝑏)

5 
where

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Baseµ = 1
𝑛
∑𝑛

𝑖=1
Base𝐩𝑖

Camµ = 1
𝑛
∑𝑛

𝑖=1
Cam𝐩𝑖

∑

= 1
𝑛
∑𝑛

𝑖=1 (
Base𝐩𝑖 − Baseµ)(Cam𝐩𝑖 − Camµ)𝑇

𝑐 = 𝑛×tr(𝐃𝐒)
∑𝑛

𝑖=1 ∥
Cam𝐩𝑖−Camµ∥2

, (11)

and let the singular value decomposition of ∑ be 𝐔𝐃𝐕𝑇 and

𝐒 =

{

𝐈 if det(∑cov) ≥ 0
𝐝𝐢𝐚𝐠(1, 1,… , 1,−1) if det(∑cov) < 0

. (12)

At least four non-coplanar points are required to estimate a unique
transformation matrix [42]. The optimal solution essentially represents
the transformation matrix Base

Cam′ �̂� from {Base} to a calculated camera
frame {Cam′}.

2.1.4. Solvability analysis
During calibration, the robot arm is moved to poses such that the

tool flange plane faces the 3D scanner. To obtain a high-quality point
cloud of the tool flange, the angle between the normal vector of the
tool flange and the optical axis should be less than a desirable threshold
𝜃max. The position of the TCP relative to the 3D scanner is estimated in
two steps.

• First, pass-through and statistical filters are applied to the original
point cloud of the scene to remove backgrounds such as table and
floor and to remove noises. The cloud point of the flange plane
can be, therefore, isolated using basic geometry segmentation
algorithms in point cloud library [43] together with geometric
constraints, such as the segmented cluster cannot have a range
more extensive than the diameter of the tool flange.

• Second, the center of the flange plane is estimated using the
RANSAC algorithm [44]. Moreover, we applied a model check so
that only circles within the desired radius range would go to the
verification stage, improving the search algorithm’s efficiency.

While the re-projection error is usually adopted as the error metric
for 2D hand–eye calibration, it does not apply to the proposed method
in this paper as our method inherently includes the fitting error of
the flange circle. It is easy to acquire the 3D model of the tool flange
to generate a ground true point cloud in the tool flange coordinate



X. Han et al. Measurement 238 (2024) 115376 
Fig. 4. The standardized geometric features on the flange of an industrial robot following ISO 9409-1: 2004 [27].
Flan𝐏true in Fig. 6 in which the color is plotted according to the 𝑧-axis
values of the point cloud.

Using a known pose of the robot arm Base
Flan𝐇𝑣 for verification, we

can obtain the ground true point cloud in the robot coordinate. Given
the hand–eye transformation matrix, the corresponding measured point
cloud Cam𝐏𝑣 can also be transformed into the robot coordinate. Then,
one can align the ground true point cloud and the measured point cloud
using the ICP algorithm [45]. Hence, we define the calibration error as

𝐞icp =

⎧

⎪

⎨

⎪

⎩

‖

‖

‖

‖

‖

‖

[

Cam𝐏𝑣

1

]

− Cam′

Base �̂� ⋅ Base
Flan𝐇𝑣 ⋅

[

Flan𝐏true

1

]

‖

‖

‖

‖

‖

‖icp
+∞, if ICP fails

, (13)

where Cam′

Base �̂� is the transformation matrix from calculated {Cam′} to
{Base}, ∥Cam 𝐏𝑣 −Cam′ 𝐏𝑣 ∥icp calculate the rotation error 𝛿𝐑 ∈ 𝑆𝑂(3)
and translation error 𝛿𝑡 ∈ R3 on the Euclidean group of rigid-body
motions 𝑆𝐸(3) such that the two point clouds are registered. The ICP
error metric 𝐞icp essentially registered the ground true camera frame
{Cam} and the calculated camera frame {Cam′}, namely Cam′

Cam 𝐇, which
is more appropriate and informative than traditional 2D error metric.
In 2D hand–eye calibration, it is common to find that the hand–eye
calibration error in position is small at the center of the camera’s field
of view and increases in marginal areas. The rotation error of the
hand–eye calibration causes this phenomenon. With the help of a 3D
6 
scanner, the reason can be immediately verified and visualized. Before
the calibration starts, the verification point cloud 𝐏𝑣 is suggested to be
collected at a pose where the robot arm will mostly work around.

A common problem during hand–eye calibration in 2D or 3D is the
sampling quality, which usually requires further optimization. Typical
issues include partial sampling, occlusion, and inaccurate circle fitting
using the standardized RANSAC algorithm. Therefore, the analytical
solution must collect more than four points to ensure a high-quality
calibration.

Therefore, we propose an online iterative calibration method de-
scribed in Algorithm 1 to collect as few points as possible and increase
the efficiency of the calibration process. The main difference is that it
includes a self-verification mechanism such that the online calibration
process becomes a closed loop. The goal is to maintain an optimized
pool of four pairs of point cloud and robot pose to minimize the ICP
error metric in 𝑆𝐸(3), which requires a real-valued cost metric ‖⋅‖cost ∶
𝑆𝐸(3) ↦ R. The calibration process keeps adding new data pairs to
the pool and retaining the optimal four pairs with the least cost. The
online calibration process stops once the cost metric has achieved a
target error 𝐞required. In practice, the design of the cost metric ‖ ⋅ ‖cost
can be flexible according to the application scenario.1

1 Codes are available at https://github.com/ancorasir/flange_handeye_
calibration.

https://github.com/ancorasir/flange_handeye_calibration
https://github.com/ancorasir/flange_handeye_calibration
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Fig. 5. The flanges of a few collaborative robots following ISO 9409-1-50-4-M6 standard: (a) Universal Robots’ UR10e [38], (b) Universal Robots’ UR5 [39], (c) Franka’s Emika [40],
and (d) AUBO’s i5 [41].
2.2. Soft robotic tactile welding via multi-modal fusion

2.2.1. Touch-based welding tool design
We proposed a touch-based welding tool with soft robotic metama-

terial (SRM) based on our previous work [35]. As shown in Fig. 7a, the
welding tool consists of a flange plate, a camera, a mounting base, an
ArUco tag, a soft robotic metamaterial (SRM), and a welding torch. The
whole tool can be mounted on the robot with the left flange. The key
features are the suitable flange-like geometric feature facing towards
the 3D scanner on the top of the plate for hand–eye calibration and
a soft robotic metamaterial (SRM) with tactile sensing capability. In
Fig. 7b, The SRM has omni-directional deformation capability when
contacting surrounding objects, such as welding seam, which is suitable
for local seam path detection. During welding, the SRM deforms when
there is a deviation between the robot and the intended paths. This
deformation could be predicted by tracking the displacement and pose
of the ArUco tag.

2.2.2. Welding seam tracking by soft touch
Before welding starts, a welding seam path can be captured and

extracted using 3D vision sensors. However, due to unavoidable error
sources, such as welding seam feature extraction or hand–eye calibra-
tion, the welding path for the robot to execute can be unpredictable. It
7 
may lead to significant deviations from the intended path. Therefore,
the fusion of tactile welding seam tracking with 3D vision could offer
a comprehensive solution to address these challenges.

The SRM introduces a novel approach for tracking the welding seam
by leveraging a simple mechanism of deformation servo. Commanding
the SRM tip to maintain contact with one side of the welding seam
effectively follows the planned welding path from 3D vision, thus
compensating for potential noise and errors inherent in the vision data.
Specifically, this is achieved by directing the soft torch to follow the
planned path only in its tangential direction while maintaining a pre-
defined deformation along its normal direction. This strategy ensures
that the SRM consistently identifies and tracks the side of the welding
seam without losing its position. Additionally, the tip of the SRM is
continuously guided to remain within the V-shaped welding seam,
allowing for the recording of its position and generating accurate real
torch path points based on this recorded information. This innovative
approach demonstrates a promising method for reliable welding seam
tracking with the SRM, mitigating potential errors and ensuring precise
and consistent weld quality.

Here, we describe the online robotic welding trajectory generation
enhanced by tactual weld seam tracking. As shown in Fig. 8, we
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Fig. 6. Point clouds of tool flanges on (a) Franka Emika and (b) UR5 from (i) CAD model and (ii) the respective point clouds measured by a 3D scanner.
Algorithm 1 The iterative flange calibration algorithm.
Input: Ground true point cloud 𝐏true, verification point cloud 𝐏𝑣,

flange radius 𝑅, calibration threshold 𝐞required, maximum iteration
𝑘 < 𝑘max;

Output: Hand–eye transformation �̂�optimal and ICP error metric 𝐞icp
1: 𝑘 ← 0;
2: Collect a set of four initial pairs of point cloud and robot pose

𝐒𝑘 = {Cam𝐏𝑖,Base pose𝑖 ∣ 𝑖 = 1, 2, 3, 4};
3: Calculate �̂� and 𝐞icp and �̂�optimal ← �̂�, 𝐞optimal ← 𝐞icp;
4: while ‖𝐞optimal‖cost > 𝐞required and 𝑘 ≤ 𝑘max do
5: Collect a new pair of point cloud and robot pose 𝐒′𝑘;
6: for 𝑖 in {1, 2, 3, 4} do
7: Replace the 𝑖th pair in 𝐒𝑘 by the new pair of data;
8: Calculate �̂� and ICP error 𝐞icp;
9: if ‖𝐞icp‖cost ≥ ‖𝐞optimal‖cost then

10: Undo the replacement
11: else
12: �̂�optimal ← �̂�
13: 𝐞optimal ← 𝐞icp
14: end if
15: end for
16: end while

consider the online welding trajectory generation problem in a 2D
plane. Denote 𝐏𝑟 = [𝑥𝑟, 𝑦𝑟] as the position vector of the robot end
effector in a fixed reference frame {𝑂}, 𝐏𝑠 = [𝑥𝑠, 𝑦𝑠] as the position
vector of SRM tip in reference frame {𝑂}, and 𝐏𝑡 = [𝑥𝑡, 𝑦𝑡] as the
position vector of welding torch in the same reference frame.

The direction of a touch-based welding tool can be described by
orthonormal vectors obtained from the rotation angle 𝛼 of the robot
end effector. These vectors are defined as �⃗�𝑑 = [cos 𝛼, sin 𝛼] and 𝑛𝑑 =
[− sin 𝛼, cos 𝛼], respectively. Because of the rigid connection between the
position vector of the robot end effector and the welding torch, we can
8 
express this relationship using the following equation:
{

𝐝 = ‖𝐝‖�⃗�𝑑
𝐏𝑟 = 𝐏𝑡 + 𝐝

, (14)

where, 𝐝 represents the position difference vector between the robot
end effector and the welding torch, and 𝐏𝑟 can be obtained from the
robot controller.

At each point along the welding path planned using 3D vision data,
when the SRM makes contact with one side of the welding seam, the
deformation can be sensed and calculated by utilizing the displacement
of the Aruco marker 𝜹 ∈ R2 detected through the in-finger camera of
the SRM. This computation is represented as:
{

𝐏𝑡𝑠
𝑟 = 𝐏𝑡𝑠

𝑠 + 𝜹𝑡𝑠

𝐏𝑛𝑠
𝑟 = 𝐏𝑛𝑠

𝑠 + 𝜹𝑛𝑠
, (15)

where, 𝐏𝑡𝑠
𝑟 , 𝐏𝑡𝑠

𝑠 and 𝜹𝑡𝑠 represent the corresponding position vectors
projected along the tangential direction at each path point, while 𝐏𝑛𝑠

𝑟 ,
𝐏𝑛𝑠
𝑠 and 𝜹𝑛𝑠 denote vectors along the normal direction.

To uphold the SRM’s deformation along the normal direction, we
initially establish a desired deformation along the normal direction,
denoted as 𝜹𝑛𝑠𝑑 . Subsequently, to maintain this directional deformation,
the robot end effector velocity can be commanded using the following
formula:
{

𝐕𝑡𝑠
𝑟 = 𝐕𝑐𝑜𝑛𝑠𝑡

𝐕𝑛𝑠
𝑟 = −𝑘𝑝(𝜹𝑛𝑠 − 𝜹𝑛𝑠𝑑 )

, (16)

where the robot end effector velocity along the tangential direction 𝐕𝑡𝑠
𝑟

maintains 𝐕𝑐𝑜𝑛𝑠𝑡, which is a constant norm vector but changes direction.
While in the normal direction, the velocity of the robot end effector
𝐕𝑛𝑠
𝑟 opposes the difference between the current detected Aruco marker

displacement in the normal direction and the pre-defined deformation.
This action serves as a resilience measure to maintain the deformation
at the desired level, with the action being governed by the parameter

𝑘𝑝.
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Fig. 7. Welding tool with soft robotic metamaterial (SRM).
Fig. 8. Online robotic welding trajectory generation with tactual weld seam tracking.

During the deformation servo, the position of the SRM tip, denoted
as 𝐏𝑠, is recorded as a refined welding seam path to be subsequently
executed by the real welding torch. And this path will be executed by
9 
the real welding torch. As the welding torch is rigidly coupled to the
robot end effector, the implicated velocity of the torch can be calculated
as:
{

𝐕𝑡𝑑
𝑡 = 𝐕𝑡𝑑

𝑟

𝐕𝑛𝑑
𝑡 = 𝐕𝑛𝑑

𝑟 + 𝜔 ‖𝐝‖ 𝑛𝑑
, (17)

where, the implicated velocity of the real welding torch 𝐕𝑡 due to the
velocity of the robot end effector 𝐕𝑟 is projected along the normal
direction and tangential direction at the point of the welding torch.
‖𝐝‖ represents the distance between the robot end effector and welding
torch in the defined 2D plane, while 𝜔 denotes the angular velocity of
the robot end effector.

The requirement for the welding torch velocity to align with the
refined welding path dictated by the SRM tip implies that the normal
component of the torch’s implicated velocity should be zero. This
relationship can be expressed as:

𝐕𝑛𝑑
𝑡 ⋅ ⃗̂𝑛𝑡 + 𝐕𝑡𝑑

𝑡 ⋅ ⃗̂𝑛𝑡 = 0, (18)

where, ⃗̂𝑛𝑡 denotes the normal direction at the refined path point of the
welding torch. The algorithm of online robotic welding trajectory gen-
eration enhanced by tactual weld seam tracking is shown in Algorithm
2.
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Algorithm 2 Online welding trajectory generation via multi-modal
fusion
Require: Welding seam path points {𝐏1

𝑣,𝐏
2
𝑣, ...,𝐏

𝑛
𝑣} planned from 3D

vision sensor, servo parameter 𝑘𝑝;
1: Initialize desired deformation along normal direction 𝜹𝑑 ;
2: while True do
3: 𝛼 ← current rotation angle of the robot end effector;
4: 𝑛𝑑 , �⃗�𝑑 ← orthonormal vectors of touch-based welding tool;
5: 𝐏𝑟 ← current position of robot end effector;
6: 𝜹𝑛𝑠 , 𝜹𝑡𝑠 ← current Aruco marker displacement along each

direction;
7: {�̂�1

𝑡 , �̂�
2
𝑡 , ..., �̂�

𝑚
𝑡 } ← REFINE(𝐏𝑟, 𝜹𝑛𝑠 , 𝜹𝑡𝑠 ); ⊳ refined path points

8: 𝐕𝑟 ←SERVO(𝐏𝑟, 𝜹𝑛𝑠 ); ⊳ linear velocity of robot end effector
9: 𝐏𝑡 ← 𝐏𝑟 − ‖𝐝‖�⃗�𝑑 ; ⊳ position of torch

10: �̂�𝑡 ← argmin
𝑗∈{1,2,...,𝑚}

‖𝐏𝑡 − �̂�𝑗
𝑡 ‖ ⊳ nearest point to 𝐏𝑡 in refined path

11: ⃗̂𝑛𝑡, ⃗̂𝑡𝑡 ← orthonormal vectors at point �̂�𝑡
12: 𝐕𝑛𝑑

𝑟 ,𝐕𝑡𝑑
𝑟 ← project 𝐕𝑟 along 𝑛𝑑 , �⃗�𝑑

13: 𝜔 ← −𝐕𝑡𝑑
𝑟 ⋅ ⃗̂𝑛𝑡+𝐕

𝑛𝑑
𝑟 ⋅ ⃗̂𝑛𝑡

‖𝐝‖ 𝑛𝑑 ⋅ ⃗̂𝑛𝑡
⊳ angular velocity of robot end effector

4: apply velocity (𝐕𝑟, 𝜔) to robot end effector;
5: end while
6: function refine(𝐏𝑟, 𝜹𝑛𝑠 , 𝜹𝑡𝑠 )
7: 𝐏𝑠 ← 𝐏𝑛𝑠

𝑟 − 𝜹𝑛𝑠 + 𝐏𝑡𝑠
𝑟 − 𝜹𝑡𝑠 ⊳ refine welding position vector

18: �̂�𝑗
𝑡 ← 𝐏𝑠 ⊳ append point to refined path

19: return {�̂�1
𝑡 , �̂�

2
𝑡 , ..., �̂�

𝑗
𝑡 }

20: end function
21: function servo(𝐏𝑟, 𝜹𝑛𝑠 )
22: 𝐏𝑣 ← argmin

𝑖∈{1,2,...,𝑛}
‖𝐏𝑟 − 𝐏𝑖

𝑣‖ ⊳ nearest point to 𝐏𝑟 in planned path

23: 𝑛𝑣, �⃗�𝑣 ← orthonormal vectors at point 𝐏𝑣
24: 𝐕𝑟 ← 𝐕𝑐𝑜𝑛𝑠𝑡 �⃗�𝑣 − 𝑘𝑝(𝜹𝑛𝑠 − 𝜹𝑑 ) ⊳ resultant linear velocity
25: return 𝐕𝑟
26: end function

3. Results

3.1. Simulation results for flange-based hand–eye calibration

Our simulation of the Eye-on-Base configuration in the Gazebo
involves a 6-DOF robot of UR5 and a depth camera. The ground-true
value of the hand–eye transformation matrix is set as the following,
similar to a real scenario, including a roll-pitch-yaw of [3.1415, 0,−1.57]
in radians between the robot base and camera and a translational vector
of [0.6,−0.0125, 1] in meters.

Base
Cam𝐇true =

⎡

⎢

⎢

⎢

⎢

⎣

0 −1 0 0.6
−1 0 0 −0.0125
0 0 −1 1
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

. (19)

A total sample of seventy-five tool flange poses was recorded to
test the robustness of the proposed method. The robot’s tool flange
moved in a grid pattern within a workspace of 0.3 m × 0.3 m × 0.2 m
with random orientations. The actual positions of the TCP of the robot
concerning the camera were obtained using TCP concerning the robot
base and the ground true hand–eye transformation matrix. To investi-
gate the proposed iterative calibration method under various levels of
disturbance to the 3D scanner, different Gaussian noise 𝐍(0, 𝜎noise) were
added directly to the actual values. The disturbed point is defined by
Cam𝐩𝑖 = Cam

Base𝐑true ⋅
Base𝐩𝑖 + Cam

Base𝐭true + 𝐍(0, 𝜎noise), (20)

here Cam
Base𝐑true and Cam

Base𝐭true are the rotational and translational parts
f the ground true hand–eye transformation matrix. The standard de-
iation of the Gaussian noise 𝜎noise ranged from 0.2 mm to 10 mm at a
tep of 0.2 mm, representing the range of precision of industrial-grade

nd consumer-grade 3D scanners. For each level of Gaussian noise,

10 
he calibration results were evaluated over 100 random realizations of
he noise. The rotation error 𝛿𝐑 is expressed in terms of roll, pitch,
nd yaw vectors (𝛿roll, 𝛿pitch, 𝛿yaw). The ICP error metric can be directly
alculated by 𝐞icp = Cam′

Base �̂� ⋅ Base
Cam𝐇true and the cost metric is defined as

he Euclidean norm of the translation error vector ‖

‖

‖

𝐞icp
‖

‖

‖cost
= ‖𝛿𝐭‖2 =

‖

‖

‖

(𝛿𝑥, 𝛿𝑦, 𝛿𝑧)
‖

‖

‖2
.

The results in Fig. 9 show the calibration error results using all data
points versus the proposed iterative method, in which the translational
and rotational errors are plotted separately concerning the various
noise levels. The gray dashed line and gray shaded area denote the
mean and standard deviation of the calibration error metric using all
75 data points evaluated over 100 random realizations of Gaussian
noises. The solid colored line and shaded area denote the mean and
standard deviation of the calibration error metric using the proposed
iterative method. All mean values of the calibration errors remain close
to zero as there is no systematic error. The standard deviations of
the calibration errors for both methods grow linearly concerning the
amplitude of the Gaussian noise. However, as shown in Figs. 9(a–c),
the iterative method is much less sensitive to noise, and the growth
rate of the standard deviation of the translational error is reduced to
1/7 compared to using all data. It was also found that the translational
errors are mainly contributed to by the 𝑥 and 𝑦 components. Hence,
when minimizing the Euclidean norm of the translational error, the
𝑧-axis translational errors of both methods remain at the same level.
Figs. 9(d–f) show that rotational error is mainly contributed by the yaw
component.

Fig. 10 shows the calibration errors concerning the iterative steps
when 𝜎noise is set at 1 mm, and all the means of the calibration
errors remain close to zero. The results are evaluated over 100 random
realizations. and the solid colored line and shaded area denote the
mean and standard deviation of the calibration errors.

In Fig. 10a, all standard deviations of the translation errors converge
to less than 1 mm within ten sampled points and finally converge to
0.2 mm within 20 sampled points. In Fig. 10b, all the standard devi-
ations of the rotational errors converge to less than half of the initial
values even though only the translational errors are optimized. This
supports that translational and rotational errors are coupled, meaning
that the decrease of one will lead to the decline of the other. The
primary rotational error is a yaw angle of about 0.2 degrees. This
corresponds to a 1 mm displacement in the 𝑥-𝑦 plane at a distance 𝑟
of 300 mm away from the optical axis in our simulation setup, which
is estimated as 𝛿yaw ⋅ 𝑟.

3.2. Hardware results for flange-based hand–eye calibration

3.2.1. Setup
The proposed iterative calibration method was applied to the hand–

eye calibration between two industrial-grade 3D scanners (PhoXi S
model and PhoXi M model) and four robot arms consisting of UR5,
UR10e, AUBO i5, and Franka Emika. The Phoxi series scanners are
based on structured light and produce up to 3.2 million 3D points.
The working distances of PhoXi S and M are 384 to 520 mm and
458 to 1,118 mm, respectively. Their temporal noise and calibration
accuracy are 0.05 mm and 0.1 mm, respectively. The 3D scanner was
mounted about 1 meter above the table facing downward, and the robot
arms were mounted on the table. The 3D scanner and robot arms were
controlled by a laptop, which was also responsible for collecting and
processing all the data. The computer has an Intel 2.80 GHz i7 CPU
and 16 GB RAM.

During the experiment, the robot arms moved in a grid pattern
in random orientations within the workspace while the roll, pitch,
and yaw concerning the robot base were all less than 0.3 radians.
After segmentation and RANSAC fitting, the TCP positions in the 3D
scanner frame were computed from the point cloud. We collected 60

to 80 point clouds for each robot arm, and the valid pairs of point
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Fig. 9. Comparison of the calibration error of using all data points (gray) and that of the proposed iterative method.
Fig. 10. The calibration error metric concerning the iterative steps.
cloud and robot pose are slightly less than these numbers as the flange
segmentation failed occasionally. For analysis, we collected all the
11 
data and calculated the hand–eye calibration. However, in practice,
the user should use the iterative calibration method online and do
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Table 1
Calibration errors using all sample points without iterative optimization.

Robot setups 𝑥
(mm)

𝑦
(mm)

𝑧
(mm)

roll
(◦)

pitch
(◦)

yaw
(◦)

UR5 & PhoXi M 11.60 2.81 5.55 0.49 −0.89 −0.47
UR10e & PhoXi M 0.60 1.75 −0.41 0.10 −0.04 −0.23
Franka Emika & PhoXi M 4.34 −4.06 −0.13 −0.30 −0.34 −0.07
AUBO i5 & PhoXi S −0.26 −0.27 −0.35 0.14 0.04 0.01
1
i
I
r
r
o

the calibration while collecting data. We shuffled the order of point
clouds 50 times for each robot arm to mimic different data collection
processes in which ill-conditioned points came at different sequences.
The calibration results were then evaluated over these 50 calculations.

3.2.2. Raw data processing
During the segmentation process for UR5, three false segmentations

of the tool flange were purposely retained in the calibration point
cloud set to demonstrate the influence of significant outliers on the
performance of the proposed iterative calibration methods. The false
segmented point clouds correspond to the other parts of the robot arm
instead of the tool flange.

The quality of the point cloud of tool flanges varied among robot
arms. The point clouds of UR’s tool flange were of good quality. For
AUBO-i5, part of the tool flange was missing in some point clouds,
partly due to its black color finish. Franka Emika’s point clouds were
incomplete due to the unique interface design. However, the RANSAC
circle fitting algorithm was robust even for incomplete point clouds of
tool flanges. The parameters of the RANSAC are as follows: The sample
size was three, which is the minimum number to define a circle. The
radius of flange 𝑅 = 31 mm. Distance threshold 𝑒𝑑 = 0.3 mm, which
should be appropriately chosen according to the precision of the 3D
scanner. Radius error tolerance 𝑒𝑟 = 1 mm, max iteration 𝑘max = 10,000.

3.2.3. Results
Table 1 lists the calibration results with all the sample points using

the SVD method. In the UR5 case, where the calibration error is so
significant that the ICP algorithm fails, the translation between the
TCP position measured from the point cloud and the TCP read from
the robot arm controller was calculated first. This translation was
used as the initial guess for the transformation of the ICP algorithm.
Although only 3 out of 54 sample point clouds are false segmentations,
the translation error is over 10 mm, leading to a practically unusable
hand–eye matrix. Franka Emika’s calibration errors are also significant,
although all the flanges are correctly segmented. This is due to the
geometry feature of Franka Emika’s flange, where the circle fitting is
more challenging. The calibration results of UR10e are relatively better,
with translational errors of less than 2 mm. AUBO i5 and Phoxi S
achieved the best calibration results with less than 0.4 mm translation
errors. The tool flange of Franka Emika and that of AUBO i5 have the
same geometry and are correctly segmented in the experiment. The
calibration results from AUBO i5 and Phoxi S suggest that 3D scanners
with higher precision lead to higher calibration accuracy.

Fig. 11 shows the calibration errors concerning the iterative steps
for robot UR5, UR10e, AUBO i5, and Franka Emika. The results are
evaluated over 50 calculations, and means are plotted in lines and
standard deviations as shaded areas. In all four scenarios, the trans-
lation errors are mainly contributed by 𝑥 and 𝑦 components, and the
rotation errors are primarily by the yaw component, which agrees well
with the simulation results. UR5, UR10e, and AUBO i5 converge to less
than 0.28 mm, while their rotational errors converge to less than 0.25
degrees. Despite the challenge in circle fitting, the translation errors of
Franka Emika converge to less than 0.4 mm at the expense of growth

in yaw-component rotation error converging to less than 0.6 degrees.

12 
Table 2
The calibration errors using Photoneo software with a spherical calibration object.

Number
of points

𝑥
(mm)

𝑦
(mm)

𝑧
(mm)

roll
(◦)

pitch
(◦)

yaw
(◦)

4 pairs −1.94 −0.90 −0.86 −0.07 0.04 −0.10
16 pairs −0.98 −1.01 −0.83 −0.07 0.09 −0.11

3.2.4. Accuracy and efficiency
The hand–eye calibration accuracy based on 3D geometry is highly

dependent on the precision of 3D scanners, the geometry of the tool
flanges, and the robustness of the feature extraction process. The pro-
posed iterative calibration method achieves much better accuracy than
only using point data, especially when there are significant outliers in
the data. The convergence speed and amplitude of calibration errors
depend on the point cloud quality of the tool flange and the robustness
of the circle fitting algorithms. The iterative method is statistically
meaningful as it resists various noise levels. In practice, a more efficient
online iterative calibration process is to perform error compensation
on the calculated hand–eye matrix once a valid ICP error metric is
obtained in steps 3 or steps 12 and 13 in Algorithm 1. The error
compensation is formulated as

�̂�compensated = �̂�optimal ⋅ 𝐞optimal. (21)

In the experiment results, the initial 𝐞optimal in step 3 in Algorithm
is sometimes infinite due to noisy data. However, after the first

teration, the chance of 𝐞optimal remaining infinity is found to be small.
n Fig. 11, all 50 random calibration calculations conducted for each
obot arm have finite 𝐞optimal within five pairs of data, which can be
eferred from the limited means and standard deviations of components
f 𝐞optimal.

We also included the hand–eye calibration result between the 3D
scanner PhoXi M and UR10e using commercial software developed by
Photoneo. The software uses a calibration sphere mounted on the robot
tool flange and calculates the hand–eye matrix after collecting a mini-
mum of four pairs of robot pose and point cloud. A few calibration trials
with 4 and 16 pairs of data are conducted respectively for comparison,
and their calibration errors are calculated using the ICP metric defined
in Eq. (13) with the same verification point cloud Cam𝐏𝑣. The results in
Table 2 show that more sample points lead to fewer errors.

However, it is also found that the calibration result is sensitive to
the diversity of the sampled points. In one of the few trials where the
sample points did not vary enough, the translational error is about
6 mm, which is unusable.

3.3. Demonstrated applications in soft robotic tactile welding

This section presents a robotic welding system within a laboratory
environment, as shown in Fig. 12. The hardware platform comprises
a PhoXi M 3D scanner (resolution at 0.3 mm), a collaborative robot
(UR10e, repeatability accuracy at 0.05 mm), and the proposed touch-
based welding tool mounted to the robot’s end-effector. All hardware
is connected to a computer to process point clouds, real-time tactile
signals, and robot control.

In Fig. 12, the system leverages the proposed flange-based method
to obtain the hand–eye transformation. After capturing the workpiece’s
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Fig. 11. The calibration error metric concerning the iterative steps.
point cloud from the 3D scanner, we registered it with the workpiece’s
CAD model to get the position of the welding seam in the scanner’s
coordinate. The position is then converted to the robot base’s coordi-
nate using the hand–eye transformation. The SRM tip is designed to
glide ahead of the welding torch, tracing the weld seam extracted and
planned by the 3D scanner. Utilizing the deformation servo mechanism
featured in Section 2.2.2, the system corrects the path followed by the
13 
robot end effector, applying an offset 𝜹 that compensates for the defor-
mation detected by the SRM at the relevant location. Consequently, the
welding torch is instructed to carry out the adjusted trajectory.

Fig. 13 shows the SRM tip, welding torch, and robot paths. During
the welding experiment, corrective adjustments are limited to those
within a two-dimensional plane orthogonal to the 𝑧-axis. The corrective
offset in the direction perpendicular to the SRM tip 𝜹𝑛𝑠 is maintained
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Fig. 12. Experiment setup of flange-based calibration for tactile-enhanced robotic welding.
at a nearly constant magnitude throughout the trajectory, in alignment
with the initially specified value 𝜹𝑑 . An exception occurs at the end of
the welding path, where the SRM unexpectedly loses contact with the
seam, prompting us to reset the deformation servo reference value 𝜹𝑑
to zero. This adjustment results in a noticeable jitter at the end portion
of the path, as seen in the plot.

Assisted by the straightforward flange hand–eye calibration method
and tactile information provided by the low-cost SRM, the robotic
welding system accomplishes autonomous weld seam tracking for two
distinct workpieces. See Movie S1 in the Supplementary Materials for
a video demonstration.

4. Discussion

4.1. Towards a depth-based hand–eye calibration

Fig. 14 shows graphical representations summarizing the above
configurations of hand–eye calibration. The proposed method in this
paper is to exploit high-quality, three-dimensional perception against
standardized design and manufacturing of the mechanical components
on the robot, which fall within a comparable level of accuracy and
tolerance. Therefore, one can reconfigure these established methods for
hand–eye calibration by removing the {Mark} frame in each case. Note
that in the reconfigured Eye-in-Hand case in Fig. 14a, the camera can
alternatively inspect the geometric features, i.e., circles, on the base
mounting flange commonly found in most robots to proceed with the
proposed calibration method. We suggest that one can freely choose
14 
any geometric features on the robot as long as a direct reading or
deduction of the referencing feature’s pose information can be obtained
from the robot’s controller or teach pendant.

4.2. Robot flanges for hand–eye calibration

In both simulation and experiment results, the cost metric mini-
mized was chosen as the Euclidean norm of the translational error
vector. The reason is that the impact of the translational error on
applying the hand–eye transformation matrix is uniform in a 3D scan-
ner. However, the rotational error is found to be small enough, and
its impact on the application is minimized around the optical axis of
the 3D scanner, which linearly increases when moving away from the
optical axis. In most scenarios, the workspace is usually located around
the optical axis of the 3D scanner. Users can choose the appropriate
elements to minimize according to their needs. For example, in the pick
and place scenario, one might only minimize the translation errors in
the 𝑥 and 𝑦-axis if the end-effector has flexibility in the 𝑧-axis. If both
translation and rotation errors are critical, the ‖ ⋅‖cost can be defined as
‖

‖

‖

(𝛿𝑥, 𝛿𝑦, 𝛿𝑧, 𝛿roll ⋅ 𝑟, 𝛿pitch ⋅ 𝑟, 𝛿yaw ⋅ 𝑟)‖‖
‖2

, where 𝑟 is the work radius from
the optical axis of the 3D scanner.

We also experimented with our proposed method using a
commercial-grade 3D scanner to test its performance. The latest release
of Microsoft’s Kinect sensor, the Azure Kinect DK, contains a 1-MP
time-of-flight (ToF) depth sensor. Following a similar process, we ex-
perimented using a UR10e and an Azure Kinect DK. Due to the technical
limitation of the ToF mechanism on metal surfaces, the quality of the
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Fig. 13. Executed paths of SRM tip, welding torch, and robot for (a) and (b)two different welding paths.
point cloud of the tool flange is rather noisy. Instead of looking for
the outer circle of the tool flange, we switch to the outer circle on
UR10e’s wrist joint, which is 90 mm, as in Fig. 5b. Fifty pairs of point
clouds and the corresponding robot poses are recorded. Verification
point clouds and robot pose are used to calculate the ICP error metric.
The translational and rotational errors using all the data points are
[−11.11, 3.90, 7.15] in mm and [−0.15, 0.92, 1.56] in degrees. The com-
pensated hand–eye matrix �̂�compensated can be obtained from Eq. (21).
Nevertheless, with high-quality depth sensors entering consumer-grade
applications, our method holds the potential for a broader range of
applications, where a raw measurement of the depth data can be used
directly for calibration and interaction.

4.3. Integration of vision and tactile for robotic welding

In robot welding applications, hand–eye calibration is crucial to
ensure precision in positioning the welding apparatus, which directly
influences the quality and integrity of the welds. The integration of
tactile sensors allows the welding process to receive real-time feedback,
enabling the system to adjust, adapt, and refine its operations based on
the feedback received. By combining global visual planning with local
tactile feedback, our system achieves comprehensive supervision and
control over the welding process, significantly enhancing precision and
adaptability.

The implications of our research for robotic vision and welding
are multifaceted. Firstly, our findings suggest that integrating tactile
feedback into visual planning systems can substantially improve weld
quality, as the system can dynamically respond to variations in the
15 
welding environment. Secondly, applying machine learning algorithms
to process the feedback data can further enhance the accuracy of
corrective actions, leading to more consistent and reliable welds. This
approach improves the current state of robotic welding systems and
opens new avenues for research in adaptive control and intelligent
decision-making in robotics.

Our presented robotic welding system offers several opportunities
for improvement, such as refining spatial welding paths based on the
designed tactile sensor [30] and improving the accuracy of corrective
actions through the use of machine learning algorithms [46]. These
enhancements are expected to significantly advance robotic vision
and welding technologies, ultimately leading to more efficient and
high-quality welding processes.

5. Conclusion, limitations, and future work

5.1. Conclusion

In this paper, we proposed an iterative hand–eye calibration method
based on the 3D measurement of the robot tool flange. Using the
Tool Center Point (TCP) of the robot arm as the referencing point, the
hand–eye calibration is simplified to fitting two 3D point sets with the
least-squares analytical solution. The proposed method adopts the 3D
error metric based on Iterative Closest Point registration to monitor
and optimize the online calibration process. Once the desired hand–
eye calibration accuracy is achieved, the calibration process is stopped,
requiring only a minimum set of point clouds to be processed. The
proposed method was applied to calculate the hand–eye transformation
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Fig. 14. A graphical summary of hand–eye calibration methods with common marker-based configurations and the proposed flange-based methods with updated configurations.
between 3D scanners, including Photoneo Phoxi S & M and Microsoft
Azure Kinect DK, and four robot arms, including UR5, UR10e, AUBO
i5, and Franka Emika. The results showed that the iterative method
converged quickly and was robust with tested robots. In addition, com-
bining the flange-based calibration method with soft tactile sensing,
a welding seam tracking system was presented. The demonstration
indicated that the system could accurately compute the transformation
among the robot tool flange, the welding seam, and the world frame,
ensuring the welding torch’s movement along the correct trajectory.
The integration of the soft tactile sensor enabled the robot to adjust
and refine the operations following the real-time feedback. The welding
system achieved more consistent welding quality through flange-based
calibration and soft tactile sensing feedback.

5.2. Limitations

The proposed online welding trajectory generation Algorithm 2
heavily relies on the geometric relationship between the weld seam
and the welding tool. In practice, using this novel touch-based welding
tool can lead to kinematic singularities when 𝑛𝑑 ⟂ ⃗̂𝑛𝑡, making it
impossible to adjust the angular velocity 𝜔 of robot end effector to
meet the velocity requirements of the seam in Eq. (18). Furthermore,
there is a concern about the sudden change in the deformation servo
reference value 𝜹𝑑 , which leads to a significant deviation from the
welding seam at the end of the path. These issues seem to hinder the
effectiveness of the algorithm. It might be worth considering ways to
address these problems to improve the quality of soft robotic tactile
welding processes.

5.3. Future work

Our future work will investigate further details on applying the
proposed approach to scenarios where the 3D scanner is mounted on
16 
the robot arm. This flexible setup allows robots to perform hand–
eye calibration while moving, making it well-suited for challenging
mobile welding tasks in unstructured environments. Additionally, we
will further explore research into utilizing machine learning algorithms
for real-time calculation of corrected welding trajectories based on the
output data from SRM in more intricate scenarios.
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